Philosophiae Naturalis Principia Mathematica/Liber II/Sect. I. De Motu corporum quibus resistitur in ratione velocitatis.

E Wikisource
Jump to navigation Jump to search
DE MOTU CORPORUM LIBER SECUNDUS.
SECT. I. De Motu corporum quibus resistitur in ratione velocitatis.
1687

 DE MOTU CORPORUM LIBER PRIMUS.
SECT. XIV. De Motu corporum Minimorum, quæ Veribus cen tripetis ad singulas Magni alicujus corporis partes ten dentibus agitantur.
SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 


DE

MOTU CORPORUM


Liber SECUNDUS


SECT. I.

De Motu corporum quibus resistitur in ratione velocitatis.

Prop. I. Theor. I.

Corporis, cui resistitur in ratione velocitatis, motus ex resistentia amissus est ut spatium movendo confectum.

Nam cum motus singulis temporis particulis amissus sit ut velocitas, hoc est ut itineris confecti particula: erit componendo motus toto tempore amissus ut iter totum. Q. E. D.

Corol. Igitur si corpus gravitate omni destitutum in spatiis liberis sola vi insita moveatur, ac detur tum motus totus sub initio, tum etiam motus reliquus post spatium aliquod confectum, dabitur spatium totum quod corpus infinito tempore describere potest. Erit enim spatium illud ad spatium jam descriptum ut motus totus sub initio ad motus illius partem amissam.

Lemma I.

Quantitates differentiis suis proportionales, sunt continue proportionales. Sit A ad A−B ut B ad B−C & C ad C−D & c. & dividendo fiet A ad B ut B ad C & C ad D &c. Q.E.D.

Prop. II. Theor. II.

Si corpori resistitur in ratione velocitatis, & sola vi insita per Medium similare moveatur, sumantur autem tempora æqualia: velocitates in principiis singulorum temporum sunt in progressione Geometrica, & spatia singulis temporibus descripta sunt ut velocitates.

Cas. 1. Dividatur tempus in particulas æquales, & si ipsis particularum initiis agat vis resistentiæ impulsu unico, quæ sit ut velocitas, erit decrementum velocitatis singulis temporis particulis ut eadem velocitas. Sunt ergo velocitates differentiis suis proportionales, & propterea (per Lem. I. Lib. II.) continue proportionales. Proinde si ex æquali particularum numero componantur tempora quælibet æqualia, erunt velocitates ipsis temporum initiis, ut termini in progressione continua, qui per saltum capiuntur, omisso passim æquali terminorum intermediorum numero. Componuntur autem horum terminorum rationes ex æqualibus rationibus terminorum intermediorum æqualiter repetitis, & propterea sunt æquales. Igitur velocitates his terminis proportionales, sunt in progressione Geometrica. Minuantur jam æquales illæ temporum particulæ, & augeatur earum numerus in infinitum, eo ut resistentiæ impulsus reddatur continuus, & velocitates in principiis æqualium temporum, semper continue proportionales, erunt in hoc etiam Cas. continue proportionales. Q. E. D.

Cas. 2. Et divisim velocitatum differentiæ, hoc est earum partes singulis temporibus amissæ, sunt ut totæ: Spatia autem singulis temporibus descripta sunt ut velocitatum partes amissæ, (per Prop. I. Lib. II.) & propterea etiam ut totæ. Q. E. D.

Corol. Hinc si Asymptotis rectangulis ADC, CH describatur Hyperbola BG, sintq; AB, DG ad Asymptoton AC perpendiculares, & exponatur tum corporis velocitas tum resistentia Medii, ipso motus initio, per lineam quamvis datam AC, elapso autem tempore aliquo per lineam indefinitam DC: exponi potest tempus per aream ABGD, & spatium eo tempore descriptum per lineam AD. Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectæ AC æqualibus temporibus descriptæ decrescent in eadem ratione.

Prop. III. Prob. I.

Corporis, cui dum in Medio similari recta ascendit vel descendit, resistitur in ratione velocitatis, quodq; ab uniformi gravitate urgetur, definire motum.

Corpore ascendente, exponatur gravitas per datum quodvis rectangulum BC, & resistentia Medii initio ascensus per rectangulum BD sumptum ad contrarias partes. Asymptotis rectangulis AC, CH, per punctum B describatur Hyperbola secans perpendicula DE, de in G, g; & corpus ascendendo, tempore DGgd, describet spatium EGge, tempore DGBA spatium ascensus totius EGB, tempore AB2G2D spatium descensus BF2G, atq; tempore 2D2G2g2d spatium descensus 2GF2e2g: & velocitates corporis (resistentiæ Medii proportionales) in horum temporum periodis erunt ABED, ABed, nulla, ABF2D, AB2e2d respective; atq; maxima velocitas, quam corpus descendendo potest acquirere, erit BC.

Resolvatur enim rectangulum AH in rectangula innumera Ak, Kl, Lm, Mn, &c. quæ sint ut incrementa velocitatum æqualibus totidem temporibus facta; &

erunt nihil, Ak, Al, Am, An, &c. ut velocitates totæ, atq; adeo (per Hypothesin)

ut resistentia Medii in principio singulorum temporum æqualium. Fiat AC ad AK vel ABHC ad ABkK, ut vis gravitatis ad resistentiam in principio temporis secundi, deq; vi gravitatis subducantur resistentiæ, & manebunt ABHC, KkHC, LlHC, NnHC, &c. ut vires absolutæ quibus corpus in principio singulorum temporum urgetur, atq; adeo (per motus Legem II.) ut incrementa velocitatum, id est, ut rectangula Ak, Kl, Lm, Mn &c; & propterea (per Lem. I. Lib. II.) in progressione Geometrica. Quare si rectæ Kk, Ll, Mm, Nn &c. productæ occurrant Hyperbolæ in q, r, s, t &c. erunt areæ ABqK, KqrL, LrsM, MstN &c. æquales, adeoq; tum temporibus tum viribus gravitatis semper æqualibus analogæ. Est autem area ABqK (per Corol. 3. Lem. VII. & Lem. VIII. Lib. I.) ad aream Bkq ut Kq ad kq seu AC ad AK, hoc est ut vis gravitatis ad resistentiam in medio temporis primi. Et simili argumento areæ qKLr, rLMs, sMNt, &c. sunt ad areas qklr, rlms, smnt &c. ut vires gravitatis ad resistentias in medio temporis secundi, tertii, quarti, &c. Proinde cum areæ æquales BAKq, qKLr, rLMs, sMNt, &c. sint viribus grauitatis analogæ, erunt areæ Bkq, qklr, rlms, smnt, &c. resistentiis in mediis singulorum temporum, hoc est, (per Hypothesin) velocitatibus, atq; adeo descriptis spatiis analogæ. Sumantur analogarum summæ, & erunt areæ Bkq, Blr, Bms, Bnt, &c. spatiis totis descriptis analogæ; necnon areæ ABqK, ABrL, ABsM, ABtN, &c. temporibus. Corpus igitur inter descendendum, tempore quovis ABrL, describit spatium Blr, & tempore LrtN spatium rlnt. Q. E. D. Et similis est demonstratio motus expositi in ascensu. Q. E. D.

Corol. 1. Igitur velocitas maxima, quam corpus cadendo potest acquirere, est ad velocitatem dato quovis tempore acquisitam, ut vis data gravitatis qua perpetuo urgetur, ad excessum vis hujus supra vim qua in fine temporis illius resistitur.

Corol. 2. Tempore autem aucto in progressione Arithmetica, summa velocitatis illius maximæ ac velocitatis in ascensu (atq; etiam earundem differentia in descensu) decrescit in progressione Geometrica.

Corol. 3. Sed & differentiæ spatiorum, quæ in æqualibus temporum differentiis describuntur, decrescunt in eadem progressione Geometrica.

Corol. 4. Spatium vero a corpore descriptum differentia est duorum spatiorum, quorum alterum est ut tempus sumptum ab initio descensus, & alterum ut velocitas, quæ etiam ipso descensus initio æquantur inter se.

Prop. IV. Prob. II.

Posito quod vis gravitatis in Medio aliquo similari uniformis sit, ac tendat perpendiculariter ad planum Horizontis; definire motum Projectilis, in eodem resistentiam velocitati proportionalem patientis.

E loco quovis D egrediatur Projectile secundum lineam quamvis rectam DP, & per longitudinem DP exponatur ejusdem velocitas sub initio motus. A puncto P ad lineam Horizontalem DC demittatur perpendiculum PC, & secetur DC in A ut sit DA ad AC ut resistentia Medii ex motu in altitudinem sub initio orta, ad vim gravitatis; vel (quod perinde est) ut sit rectangulum sub DA & DP ad rectangulum sub AC & CP ut resistentia tota sub initio motus ad vim Gravitatis. Describatur Hyperbola quævis GTBS secans erecta perpendicula DG, AB in G & B; & compleatur parallelogrammum DGKC, cujus latus GK secet AB in Q. Capiatur linea N in ratione ad QB qua DC sit ad CP; & ad rectæ DC punctum quodvis R erecto perpendiculo RT, quod Hyperbolæ in T, & rectis GK, DP in t & V occurrat; in eo cape Vr æqualem , & Projectile tempore DRTG perveniet ad punctum r, describens curvam lineam DraF, quam punctum r semper tangit; perveniens autem ad maximam altitudinem a in perpendiculo AB, & postea semper appropinquans ad Asymptoton PLC. Estq; velocitas ejus in puncto quovis r ut Curvæ Tangens rL. Q. E. I.

Est enim N ad QB ut DC ad CP seu DR ad RV, adeoq; RV æqualis , & Rr (id est RV−Vr seu ) æqualis . Exponatur jam tempus per aream RDGT, & (per Legum Corol. 2.) distinguatur motus corporis in duos, unum ascensus, alterum ad latus. Et cum resistentia sit ut motus, distinguetur etiam hæc in partes duas partibus motus proportionales & contrarias: ideoq; longitudo a motu ad latus descripta erit (per Prop. II. hujus) ut linea DR, altitudo vero (per Prop. III. hujus) ut area DR×AB−RDGT, hoc est, ut linea Rr. Ipso autem motus initio area RDGT æqualis est rectangulo DR×AQ, ideoq; linea illa Rr (seu ) tunc est ad DR ut AB−AQ (seu QB) ad N, id est ut CP ad DC; atq; adeo ut motus in altitudinem ad motum in longitudinem sub initio. Cum igitur Rr semper sit ut altitudo, ac DR semper ut longitudo, atq; Rr ad DR sub initio ut altitudo ad longitudinem: necesse est ut Rr semper sit ad DR ut altitudo ad longitudinem, & propterea ut corpus moveatur in linea DraF, quam punctum r perpetuo tangit. Q. E. D.

Corol. 1. Hinc si vertice D, Diametro DE deorsum producta, & latere recto quod sit ad 2DP ut resistentia tota, ipso motus initio, ad vim gravitatis, Parabola construatur: velocitas quacum corpus exire debet de loco D secundum rectam DP, ut in Medio uniformi resistente describat Curvam DraF, ea ipsa erit quacum exire debet de eodem loco D, secundum eandem rectam DR, ut in spatio non resistente describat Parabolam. Nam Latus rectum Parabolæ hujus, ipso motus initio, est & Vr est seu . Recta autem, quæ, si duceretur, Hyperbolam GTB tangeret in G, parallela est ipsi DK, ideoq; Tt est , & N erat . Et propterea Vr est , id est (ob proportionales DR & DC, DV & DP) , & Latus rectum prodit , id est (ob proportionales QB & CK, DA & AC) , adeoq; ad 2DP ut DP×DA ad PC×AC; hoc est ut resistentia ad gravitatem. Q.E.D.

Corol. 2. Unde si corpus de loco quovis D, data cum velocitate, secundum rectam quamvis positione datam DP projiciatur; & resistentia Medii ipso motus initio detur, inveniri potest Curva DraF, quam corpus idem describet. Nam ex data velocitate datur latus rectum Parabolæ, ut notum est. Et sumendo 2DP ad latus illud rectum ut est vis Gravitatis ad vim resistentiæ, datur DP. Dein secando DC in A, ut sit CP×AC ad DP×DA in eadem illa ratione Gravitatis ad resistentiam, dabitur punctum A. Et inde datur Curva DraF.

Corol. 3. Et contra, si datur curva DraF, dabitur & velocitas corporis & resistentia Medii in locis singulis r. Nam ex data ratione CP×AC ad DP×DA, datur tum resistentia Medii sub initio motus, tum latus rectum Parabolæ: & inde datur etiam velocitas sub initio motus. Deinde ex longitudine tangentis rL, datur & huic proportionalis velocitas, & velocitati proportionalis resistentia in loco quovis r.

Corol. 4. Cum autem longitudo 2DP sit ad latus rectum Parabolæ ut gravitas ad resistentiam in D; & ex aucta Velocitate augeatur resistentia in eadem ratione, at latus rectum Parabolæ augeatur in ratione illa duplicata: patet longitudinem 2DP augeri in ratione illa simplici, adeoq; velocitati semper proportionalem esse, neq; ex angulo CDP mutato augeri vel minui, nisi mutetur quoq; velocitas.

Corol. 5. Unde liquet methodus determinandi Curvam DraF ex Phænomenis quamproxime, & inde colligendi resistentiam & velocitatem quacum corpus projicitur. Projiciantur corpora duo similia & æqualia eadem cum velocitate, de loco D, secundum angulos diversos CDP, cDp (minuscularum literarum locis subintellectis) & cognoscantur loca F, f, ubi incidunt in horizontale planum DC. Tum, assumpta quacunq; longitudine pro DP vel Dp, fingatur quod resistentia in D sit ad gravitatem in ratione qualibet, & exponatur ratio illa per longitudinem quamvis SM. Deinde per computationem, ex longitudine illa assumpta DP, inveniantur longitudines DF, Df, ac de ratione per calculum inventa, auferatur ratio eadem per experimentum inventa, & exponatur differentia per perpendiculum MN. Idem fac iterum ac tertio, assumendo semper novam resistentiæ ad gravitatem rationem SM, & colligendo novam differentiam MN. Ducantur autem differentiæ affirmativæ ad unam partem rectæ SM, & negativæ ad alteram; & per puncta N, N, N agatur curva regularis NNN secans rectam SMMM in X, & erit SX vera ratio resistentiæ ad gravitatem, quam invenire oportuit. Ex hac ratione colligenda est longitudo DF per calculum; & longitudo quæ sit ad assumptam longitudinem DP ut modo inventa longitudo DF ad longitudinem eandem per experimentum cognitam, erit vera longitudo DP. Qua inventa, habetur tum Curva Linea DraF quam corpus

describit, tum corporis velocitas & resistentia in locis singulis.

Scholium.

Cæterum corpora resisti in ratione velocitatis Hypothesis est magis Mathematica quam Naturalis. Obtinet hæc ratio quamproxime ubi corpora in Mediis rigore aliquo præditis tardissime moventur. In Mediis autem quæ rigore omni vacant (uti posthac demonstrabitur) corpora resistuntur in duplicata ratione velocitatum. Actione corporis velocioris communicatur eidem Medii quantitati, tempore minore, motus major in ratione majoris velocitatis, adeoq; tempore æquali (ob majorem Medii quantitatem perturbatam) communicatur motus in duplicata ratione major, estq; resistentia (per motus Legem 2. & 3.) ut motus communicatus. Videamus igitur quales oriantur motus ex hac lege Resistentiæ.