Jump to content

Pagina:Principia newton la.djvu/102

E Wikisource
Haec pagina emendata est

illæ simul describantur. Corpora autem quæ partes totis semper proportionales simul describunt, simul describent totas. Q. E. D.

Corol. 1. Hinc si corpus T filo rectilineo AT a centro A pendens, describat arcum circularem STRQ, & interea urgeatur secundum lineas parallelas deorsum a vi aliqua, quæ sit ad vim uniformem gravitatis, ut arcus TR ad ejus sinum TN: æqualia erunt Oscillationum singularum tempora. Etenim ob parallelas TZ, AR, similia erunt triangula ANT, TYZ; & propterea TZ erit ad AT ut TY ad TN; hoc est, si gravitatis vis uniformis exponatur per longitudinem datam AT, vis TZ, qua Oscillationes evadent Isochronæ, erit ad vim gravitatis AT, ut arcus TR ipsi TY æqualis ad arcus illius sinum TN.

Corol. 2. Igitur in Horologiis, si vires a Machina in Pendulum ad motum conservandum impressæ ita cum vi gravitatis componi possint, ut vis tota deorsum semper sit ut linea quæ oritur applicando rectangulum sub arcu TR & radio AR, ad sinum TN, Oscillationes omnes erunt Isochronæ.

Prop. LIV. Prob. XXXVI.

Concessis figurarum curvilinearum quadraturis, invenire tempora quibus corpora vi qualibet centripeta in lineis quibuscunq; curvis in plano per centrum virium transeunte descriptis, descendent & ascendent.

Descendat enim corpus de loco quovis S per lineam quamvis curvam STtR in plano per virium centrum C transeunte datam. Jungatur CS & dividatur eadem in partes innumeras æquales, sitq; Dd partium illarum aliqua. Centro C, intervallis CD, Cd describantur circuli DT, dt, Lineæ curvæ STtR occurrentes in T & t. Et ex data tum lege vis centripetæ, tum altitudine CS de qua corpus cecidit; dabitur velocitas corporis in alia quavis altitudine CT, per Prop. XXXIX. Tempus autem, quo corpus describit lineolam Tt, est ut lineolæ hujus longitudo (id est ut secans anguli tTC) directe, & velocitas inverse. Tempori huic proportionalis sit ordinatim applicata DN ad rectam CS per punctum D perpendicularis, & ob datam Dd erit rectangulum Dd×DN, hoc est area DNnd, eidem tempori proportionale. Ergo si SNn sit curva illa linea quam punctum N perpetuo tangit, erit area SNDS proportionalis tempori quo corpus descendendo descripsit lineam ST; proindeq; ex inventa illa area dabitur tempus. Q. E. I.

Prop. LV. Theor. XIX.

Si corpus movetur in superficie quacunq; curva, cujus axis per centrum virium transit, & a corpore in axem demittatur perpendicularis, eiq; parallela & æqualis ab axis puncto quovis ducatur: dico quod parallela illa aream tempori proportionalem describet.