Jump to content

Pagina:Principia newton la.djvu/127

E Wikisource
Haec pagina emendata est

quotcunq; concentricas similares GH, IK, LM, &c. singulæ singulas, viribus reciproce proportionalibus quadrato distantiæ SP. Et componendo vel dividendo, summa virium illarum omnium, vel excessus aliquarum supra alias, hoc est, vis qua Sphæra tota ex concentricis quibuscunq; vel concentricarum differentiis composita AB, trahit totam ex concentricis quibuscunq; vel concentricarum differentiis compositam GH, erit in eadem ratione. Augeatur numerus Sphærarum concentricarum in infinitum sic, ut materiæ densitas una cum vi attractiva, in progressu a circumferentia ad centrum, secundum Legem quamcunq; crescat vel decrescat: & addita materia non attractiva compleatur ubivis densitas deficiens, eo ut Sphæræ acquirant formam quamvis optatam; & vis qua harum una attrahet alteram erit etiamnum (per argumentum superius) in eadem illa distantiæ quadratæ ratione inversa. Q. E. D.

Corol. 1. Hinc si ejusmodi Sphæræ complures sibi invicem per omnia similes se mutuo trahant; attractiones acceleratrices singularum in singulas erunt in æqualibus quibusvis centrorum distantiis ut Sphæræ attrahentes.

Corol. 2. Inq; distantiis quibusvis inæqualibus, ut Sphæræ attrahentes applicatæ ad quadrata distantiarum inter centra.

Corol. 3. Attractiones vero motrices, seu pondera Sphærarum in Sphæras erunt, in æqualibus centrorum distantiis, ut Sphæræ attrahentes & attractæ conjunctim, id est, ut contenta sub Sphæris per multiplicationem producta.

Corol. 4. Inq; distantiis inæqualibus, ut contenta illa applicata ad quadrata distantiarum inter centra.

Corol. 5. Eadem valent ubi attractio oritur a Sphæræ utriusq; virtute attractiva, mutuo exercita in Sphæram alteram. Nam viribus ambabus geminatur attractio, proportione servata.

Corol. 6. Si hujusmodi Sphæræ aliquæ circa alias quiescentes revolvantur, singulæ circa singulas, sintq; distantiæ inter centra revolventium & quiescentium proportionales quiescentium diametris; æqualia erunt tempora periodica.

Corol. 7. Et vicissim, si tempora periodica sunt æqualia, distantiæ erunt proportionales diametris.

Corol. 8. Eadem omnia, quæ superius de motu corporum circa umbilicos Conicarum Sectionum demonstrata sunt, obtinent ubi Sphæra attrahens, formæ & conditionis cujusvis jam descriptæ, locatur in umbilico.

Corol. 9. Ut & ubi gyrantia sunt etiam Sphæræ attrahentes, conditionis cujusvis jam descriptæ.

Prop. LXXVII. Theor. XXXVII.

Si ad singula Sphærarum puncta tendant vires centripetæ proportionales distantiis punctorum a corporibus attractis: dico quod vis composita, qua Sphæræ duæ se mutuo trahent, est ut distantia inter centra Sphærarum.

Cas. 1. Sit ACBD Sphæra, S centrum ejus, P corpusculum attractum, PASB axis Sphæræ per