Jump to content

Pagina:Principia newton la.djvu/162

E Wikisource
Haec pagina emendata est

amittere posset, ut triangulum ApD ad Sectorem circularem AtD, sive ut recta Ap ad arcum At.

Corol. 5. Est igitur tempus quo corpus in Medio resistente cadendo velocitatem AP acquirit, ad tempus quo velocitatem maximam AC in spatio non resistente cadendo acquirere posset, ut Sector ADT ad triangulum ADC: & tempus, quo velocitatem Ap in Medio resistente ascendendo possit amittere, ad tempus quo velocitatem eandem in spatio non resistente ascendendo posset amittere, ut arcus At ad ejus Tangentem Ap.

Corol. 6. Hinc ex dato tempore datur spatium ascensu vel descensu descriptum. Nam corporis in infinitum descendentis datur velocitas maxima, per Corol. 2. & 3. Theor. VI, Lib. II. indeq; datur & spatium quod semisse velocitatis illius dato tempore describi potest, & tempus quo corpus velocitatem illam in spatio non resistente cadendo posset acquirere. Et sumendo Sectorem ADT vel ADt ad triangulum ADC in ratione temporum; dabitur tum velocitas AP vel Ap, tum area ABKN vel ABkn, quæ est ad Sectorem ut spatium quæsitum ad spatium jam ante inventum.

Corol. 7. Et regrediendo, ex dato ascensus vel descensus spatio ABnk vel ABNK, dabitur tempus ADt vel ADT.

Prop. X. Prob. III.

Tendat uniformis vis gravitatis directe ad planum Horizontis, sitq; resistentia ut medii densitas & quadratum velocitatis conjunctim: requiritur tum Medii densitas in locis singulis, quæ faciat ut corpus in data quavis linea curva moveatur, tum corporis velocitas in iisdem locis.

Sit AK planum illud plano Schematis perpendiculare; ACK linea curva; C corpus in ipsa motum; & FCf recta ipsam tangens in C. Fingatur autem corpus C nunc progredi ab A ad K per lineam illam ACK, nunc vero regredi per eandem lineam; & in progressu impediri a Medio, in regressu æque promoveri, sic ut in iisdem locis eadem semper sit corporis progredientis & regredientis velocitas. Æqualibus autem temporibus describat corpus progrediens arcum quam minimum CG, & corpus regrediens arcum Cg; & sint CH, Ch longitudines æquales rectilineæ, quas corpora de loco C exeuntia, his temporibus, absq; Medii & Gravitatis actionibus describerent: & a punctis C, G, g, ad planum horizontale AK demittantur perpendicula CB, GD, gd, quorum GD ac gd tangenti occurrant in F & f. Per Medii resistentiam fit ut corpus progrediens, vice longitudinis CH, describat solummodo longitudinem CF ; & per vim gravitatis transfertur corpus de F in G: adeoq; lineola HF vi resistentiæ, & lineola FG vi gravitatis simul generantur. Proinde (per Lem. X. Lib. I.) lineola FG est ut vis gravitatis & quadratum temporis conjunctim, adeoq; (ob datam gravitatem) ut quadratum temporis; & lineola HF ut resistentia & quadratum temporis, hoc est ut resistentia & lineola FG. Et inde