Jump to content

Pagina:Principia newton la.djvu/17

E Wikisource
Haec pagina emendata est

eandem mutationem in partem contrariam vi alterius (ob æqualitatem pressionis mutuæ) subibit. His actionibus æquales fiunt mutationes non velocitatum sed motuum, (scilicet in corporibus non aliunde impeditis:) Mutationes enim velocitatum, in contrarias itidem partes factæ, quia motus æqualiter mutantur, sunt corporibus reciproce proportionales.

Corol. I.

Corpus viribus conjunctis diagonalem parallelogrammi eodem tempore describere, quo latera separatis.

Si corpus dato tempore, vi sola M, ferretur ab A ad B, & vi sola N, ab A ad C, compleatur parallelogrammum ABDC, & vi utraq; feretur id eodem tempore ab A ad D. Nam quoniam vis N agit secundum lineam AC ipsi BD parallelam, hæc vis nihil mutabit velocitatem accedendi ad lineam illam BD a vi altera genitam. Accedet igitur corpus eodem tempore ad lineam BD sive vis N imprimatur, sive non, atq; adeo in fine illius temporis reperietur alicubi in linea illa BD. Eodem argumento in fine temporis ejusdem reperietur alicubi in linea CD, & idcirco in utriusq; lineæ concursu D reperiri necesse est.

Corol. II.

Et hinc patet compositio vis directæ AD ex viribus quibusvis obliquis AB & BD, & vicissim resolutio vis cujusvis directæ AD in obliquas quascunq; AB & BD. Quæ quidem Compositio & resolutio abunde confirmatur ex Mechanica.

Ut si de rotæ alicujus centro O exeuntes radij in æquales OM, ON filis MA, NP sustineant pondera A & P, & quærantur vires ponderum ad movendam rotam: per centrum O agatur recta KOL filis per pendiculariter occurrens in K & L, centroq; O & in tervallorum OK, OL majore OL describatur circulus occurrens filo MA in D: & actæ rectæ OD parallela sit AC & perpendicularis DC. Quoniam nihil refert utrum filorum puncta K, L, D affixa sint vel non af fixa ad planum rotæ, pondera idem valebunt ac si suspenderentur a punctis K & L vel D & L. Ponderis autem A exponatur vis tota per lineam AD, & hæc resolvetur in vires AC, CD, quarum AC trahendo radium OD directe a centro nihil valet ad movendam rotam; vis autem altera DC, trahendo radium DO perpendiculariter, idem valet ac si perpendiculariter traheret radium OL ipsi OD æqualem; hoc est idem atq; pondus P, quod sit ad pondus A ut vis DC ad vim DA, id est (ob similia triangula ADC, DOK,) ut OK ad OD seu OL. Pondera igitur A & P, quæ sunt reciproce ut radii in directum positi OK & OL, idem pollebunt & sic consistent in æquilibrio: (quæ est proprietas notissima