Jump to content

Pagina:Principia newton la.djvu/182

E Wikisource
Haec pagina emendata est

Cas. 4. Dico jam quod fluidi partes omnes ubiq; premuntur æqualiter. Nam partes duæ quævis tangi possunt a partibus Sphæricis in punctis quibuscunque, & ibi partes illas Sphæricas æqualiter premunt, per Casum 3. & vicissim ab illis æqualiter premuntur, per Motus Legem Tertiam. Q. E. D.

Cas. 5. Cum igitur fluidi pars quælibet GHI in fluido reliquo tanquam in vase claudatur, & undique prematur æqualiter, partes autem ejus se mutuo æqualiter premant & quiescant inter se; manifestum est quod Fluidi cujuscunque GHI, quod undique premitur æqualiter, partes omnes se mutuo premunt æqualiter, & quiescunt inter se. Q. E. D.

Cas. 6. Igitur si Fluidum illud in vase non rigido claudatur, & undique non prematur æqualiter, cedet idem pressioni fortiori, per Definitionem Fluiditatis.

Cas. 7. Ideoque in vase rigido Fluidum non sustinebit pressionem fortiorem ex uno latere quam ex alio, sed eidem cedet, idq; in momento temporis, quia latus vasis rigidum non persequitur liquorem cedentem. Cedendo autem urgebit latus oppositum, & sic pressio undique ad æqualitatem verget. Et quoniam Fluidum, quam primum a parte magis pressa recedere conatur, inhibetur per resistentiam vasis ad latus oppositum; reducetur pressio undique ad æqualitatem in momento temporis absque motu locali; & subinde, partes fluidi, per Casum quintum, se mutuo prement æqualiter, & quiescent inter se. Q. E. D.

Corol. Unde nec motus partium fluidi inter se, per pressionem fluido ubivis in externa superficie illatam, mutari possunt nisi, quatenus aut figura superficiei alicubi mutatur, aut omnes fluidi partes intensius vel remissius sese premendo difficilius vel facilius labuntur inter se.

Prop. XX. Theor. XIV.

Si Fluidi Sphærici, & in æqualibus a centro distantiis homogenei, fundo sphærico concentrico incumbentis partes singulæ versus centrum totius gravitent; sustinet fundum pondus Cylindri, cujus basis æqualis est superficiei fundi, & altitudo eadem quæ Fluidi incumbentis.

Sit DHM superficies fundi, & AEI superficies superi or fluidi. Superficiebus sphæricis innumeris BFK, CGL distinguatur fluidum in Orbes concentricos æqualiter cras sos; & concipe vim gravitatis agere solummodo in superfi ciem superiorem Orbis cujusque, & æquales esse actiones in æquales partes superficierum omnium. Premitur ergo su perficies suprema AE vi simplici gravitatis propriæ, qua & omnes Orbis supremi partes & superficies secunda BFK (per Prop. XIX.) premuntur. Premitur præterea superficies secunda BFK vi propriæ gravitatis, quæ addita vi priori facit pressionem duplam. Hac pres sione & insuper vi propriæ gravitatis, id est pressione tripla, urgetur superficies tertia CGL. Et similiter pressione quadrupla urgetur superficies quarta, quin tupla quinta & sic deinceps. Pressio igitur qua superficies unaquæque urgetur, non est ut quantitas solida fluidi incumbentis, sed ut numerus Orbium ad usque summitatem fluidi; & æquatur gravitati Orbis infimi multiplicatæ per numerum