Jump to content

Pagina:Principia newton la.djvu/253

E Wikisource
Haec pagina emendata est

oriente in occidentem. Eodem argumento, nisi Terra nostra paulò altior esset sub æquatore quàm ad polos, Maria ad polos subsiderent, & juxta æquatorem ascendendo, ibi omnia inundarent.

Prop. XIX. Prob. II.

Invenire proportionem axis Planetæ ad diametros eidem perpendiculares.

Ad hujus Problematis solutionem requiritur computatio multiplex, quæ facilius exemplis quàm præceptis addiscitur. Inito igitur calculo invenio, per Prop. IV. Lib. I. quod viscentrifuga partium Terræ sub æquatore, ex motu diurno oriunda, sit ad vim gravitatis ut 1 ad 290. Unde si APBQ figuram Terræ designet revolutione Ellipseos circa axem minorem P Q genitam; sitque ACQqca canalis aquæ plena, à polo Qq ad centrum Cc, & inde ad æquatorem Aa pergens: debebit pondus aquæ in canalis crure ACca esse ad pondus aquæ in crure altero QCcq ut 291 ad 290, eò quòd vis centrifuga ex circulari motu orta partem unam è ponderis partibus 291 sustinebit & detrahet, & pondus 290 in altero crure sustinebit partes reliquas. Porrò (ex Propositionis XCI. Corollario secun do, Lib. I.) computationem ineundo, invenio quod si Terra constaret ex uniformi materia, motuque omni privaretur, & esset ejus axis PQ ad diametrum AB ut 100 ad 101: gravitas in loco Q in Terram, foret ad gravitatem in eodem loco Q sphæram centro C radio PC vel QC descriptam, ut 126 ad 125. Et eodem argumento gravitas in loco A in Sphæroidem, convolutione Ellipseos APBQ circa axem AB descriptam, est ad gravitatem in eodem loco A in Sphæram centro C radio AC descriptam, ut 125 ad 126. Est autem gravitas in loco A in Terram, media proportionalis inter gravitates in dictam Sphæroidem & Sphæram, propterea quod Sphæra, diminuendo diametrum PQ in ratione 101 ad 100, vertitur in figuram Terræ; & hæc figura diminuendo in eadem ratione diametrum tertiam, quæ diametris duabus AP, PQ perpendicularis est, vertitur in dictam Sphæroidem, & gravitas in A, in casu utroque, diminuitur in eadem ratione quam proximè. Est igitur gravitas in A in Sphæram centro C radio AC descriptam, ad gravitatem in A in Terram ut 126 ad 125, & gravitas in loco Q in Sphæram centro C radio QC descriptam, est ad gravitatem in loco A in Sphæram centro C radio AC descriptam, in ratione diametrorum (per Prop. LXXII. Lib. I.) id est ut 100 ad 101: Conjungantur jam hæ tres rationes, 126 ad 125, 125 ad 126 & 100 ad 101 & fiet gravitas in loco Q in Terram ad gravitatem in loco A in Terram, ut 126×126×100 ad 125×125×101, seu ut 501 ad 500.

Jam cum per Corol. 3. Prop. XCI. Lib. I. gravitas in canalis crure utrovis ACca vel QCcq sit ut distantia locorum à centro Terræ; si crura illa superficiebus transversis & æquidistantibus distinguantur in partes totis proportionales, erunt pondera partium singularum in crure ACca ad pondera partium totidem in crure altero, ut magnitudines & gravitates acceleratrices conjunctim; id est ut 101 ad 100 & 500 ad 501, hoc est ut 505 ad 501. Ac proinde si vis centrifuga partis