Jump to content

Pagina:Principia newton la.djvu/44

E Wikisource
Haec pagina emendata est

Ab umbilico S ad tangentem PR demitte perpendiculum SY & velocitas corporis P erit reciproce in dimidiata ratione quantitatis . Nam velocitas illa est ut arcus quam minimus PQ in data temporis particula descriptus, hoc est (per Lem. VII.) ut tangens PR, id est (ob proportionales PR ad QT & SP ad SY) ut , sive ut SY reciproce & SP×QT directe; estq; SP×QT ut area dato tempore descripta, id est, per Theor. VI. in dimidiata ratione lateris recti Q. E. D.

Corol. 1. Latera recta sunt in ratione composita ex duplicata ratione perpendiculorum & duplicata ratione velocitatum.

Corol. 2. Velocitates corporum in maximis & minimis ab umbilico communi distantiis, sunt in ratione composita ex ratione distantiarum inverse & dimidiata ratione laterum rectorum directe. Nam perpendicula jam sunt ipsæ distantiæ.

Corol. 3. Ideoq; velocitas in Conica sectione, in minima ab umbilico distantia, est ad velocitatem in circulo in eadem a centro distantia, in dimidiata ratione lateris recti ad distantiam illam duplicatam.

Corol. 4. Corporum in Ellipsibus gyrantium velocitates in mediocribus distantiis ab umbilico communi sunt eædem quæ corporum gyrantium in circulis ad easdem distantias, hoc est (per Corol. VI. Theor. IV.) reciproce in dimidiata ratione distantiarum. Nam perpendicula jam sunt semi axes minores, & hi sunt ut mediæ proportionales inter distantias & latera recta. Componatur hæc ratio inverse cum dimidiata ratione laterum rectorum directe, & fiet ratio dimidiata distantiarum inverse.

Corol. 5. In eadem vel æqualibus figuris, vel etiam in figuris inæqualibus, quarum latera recta sunt æqualia, velocitas corporis est reciproce ut perpendiculum demissum ab umbilico ad tangentem.

Corol. 6. In Parabola, velocitas est reciproce in dimidiata ratione distantiæ corporis ab umbilico figuræ, in Ellipsi minor est, in Hyperbola major quam in hac ratione. Nam (per Corol. 2 Lem. XIV.) perpendiculum demissum ab umbilico ad tangentem Parabolæ est in dimidiata ratione distantiæ.

Corol. 7. In Parabola, velocitas ubiq; est ad velocitatem corporis revolventis in circulo ad eandem distantiam, in dimidiata ratione numeri binarii ad unitatem; in Ellipsi minor est, in Hyperbola major quam in hac ratione. Nam per hujus Corollarium secundum, velocitas in vertice Parabolæ est in hac ratione, & per Corollaria sexta hujus & Theorematis quarti, servatur eadem proportio in omnibus distantiis. Hinc etiam in Parabola velocitas ubiq; æqualis est velocitati corporis revolventis in circulo ad dimidiam distantiam, in Ellipsi minor est, in Hyperbola major.

Corol. 8. Velocitas gyrantis in Sectione quavis Conica est ad velocitatem gyrantis in circulo in distantia dimidii lateris recti Sectionis, ut distantia illa ad perpendiculum ab umbilico in tangentem Sectionis demissum. Patet per Corollarium quintum.

Corol. 9. Unde cum (per Corol. 6. Theor. IV.) velocitas gyrantis in hoc circulo sit ad velocitatem gyrantis in circulo quovis alio, reciproce in dimidiata ratione distantiarum; fiet ex æquo velocitas gyrantis in Conica sectione ad velocitatem gyrantis in circulo in eadem distantia, ut media proportionalis inter distanti-