Jump to content

Pagina:Principia newton la.djvu/59

E Wikisource
Haec pagina emendata est

Idem aliter.

Revolvatur tum angulus magnitudine datus CBH circa polum B, tum radius quilibet rectilineus & utrinq; productus DC circa polum C. Notentur puncta M, N in quibus anguli crus BC secat radium illum ubi crus alterum BH concurrit cum eodem radio in punctis D & P. Deinde ad actam infinitam MN concurrant perpetuo radius ille CP vel CD & anguli crus CB, & cruris alterius BH concursus cum radio delineabit Trajectoriam quæsitam.

Nam si in constructionibus Problematis superioris accedat punctum A ad punctum B, lineæ CA & CB coincident, & linea AB in ultimo suo situ fiet tangens BH, atq; adeo constructiones ibi positæ evadent eædem cum constructionibus hic descriptis. Delineabit igitur cruris BH concursus cum radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH tangentem in puncto B. Q. E. F.

Cas. 2. Dentur puncta quatuor B, C, D, P extra tangentem HI sita. Junge bina BD, CP concurrentia in G, tangentiq; occurrentia in H & I. Secetur tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media proportionali inter BH & HD & media proportionali inter CG & GP, ad rectangulum sub media proportionali inter PI & IC & media proportionali inter DG & GB, & erit A punctum contactus. Nam si rectæ PI parallela HX trajectoriam secet in punctis quibusvis X & Y: erit (ex Conicis) HA quad. ad AI quad. ut rectangulum XHY ad rectangu lum BHD (seu rectangulum CGP ad rectangulum DGB) & rectangulum BHD ad rectangulum PIC conjunctim. Invento autem contactus puncto A, describetur Trajectoria ut in casu primo. Q. E. F. Capi autem potest punctum A vel inter puncta H & I, vel extra; & perinde Trajectoria dupliciter describi.

Prop. XXIV. Prob. XVI.

Trajectoriam describere quæ transibit per data tria puncta & rectas duas positione datas continget.

Dentur tangentes HI, KL & puncta B, C, D. Age BD tangentibus occurrentem in punctis H, K & CD tangentibus occurrentem in punctis I, L. Actas ita seca in R & S, ut sit HR ad KR ut est media proportionalis inter BH &