pendeat corpus T, & ita intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem illam APS, versus quam peragitur motus, & circum eam ceu obstaculum flectatur, parteq; reliqua PT cui semicyclois nondum objicitur, protendatur in lineam rectam; & pondus T oscillabitur in Cycloide data QRS. Q.E.F.
Occurrat enim filum PT tum Cycloidi QRS in T, tum circulo QOS in V, agaturq; CV occurrens circulo ABD in B; & ad fili partem rectam PT, e punctis extremis P ac T, erigantur perpendicula PB, TW, occurrentia rectæ CV in B & W. Patet enim ex genesi Cycloidis, quod perpendicula illa PB, TW, abscindent de CV longitudines VB, VW rotarum diametris OA, OR æquales, atq; adeo quod punctum B incidet in circulum ABD. Est igitur TP ad VP (duplum sinum anguli VBP existente BV radio) ut BW ad BV, seu AO+OR ad AO, id est (cum sint CA ad CO, CO ad CR & divisim AO ad OR proportionales,) ut CA+CO seu 2CE ad CA. Proinde per Corol. 1. Prop. XLIX. longitudo PT æquatur Cycloidis arcui PS, & filum totum APT æquatur Cycloidis arcui dimidio APS, hoc est (per Corollar. 2. Prop. XLIX) longitudini AR. Et propterea vicissim si filum manet semper æquale longitudini AR movebitur punctum T in Cycloide QRS. Q. E. D.
Corol. Filum AR æquatur Cycloidis arcui dimidio APS.
Prop. LI. Theor. XVIII.
Si vis centripeta tendens undiq; ad Globi centrum C sit in locis singulis ut distantia loci cujusq; a centro, & hac sola vi agente Corpus T oscilletur (modo jam descripto) in perimetro Cycloidis QRS: dico quod oscillationum utcunq; inæqualium æqualia erunt Tempora.
Nam in Cycloidis tangentem TW infinite productam cadat perpendiculum CX & jungatur CT. Quoniam vis centripeta qua corpus T impellitur versus C est ut distantia CT, (per Legum Corol. 2.) resolvitur in partes CX, TX, quarum CX impellendo corpus directe a P distendit filum PT & per cujus resistentiam tota cessat, nullum alium edens effectum; pars autem altera TX urgendo corpus transversim seu versus X, directe accelerat motum ejus in Cycloide; manifestum est quod corporis acceleratio huic vi acceleratrici proportionalis sit singulis momentis ut longitudo TX, id est, ob datas CV, WV iisq; proportionales TX, TW, ut longitudo TW, hoc est (per Corol. 1. Prop. XLIX.) ut longitudo arcus Cycloidis TR. Pendulis igitur duabus APT, Apt de perpen diculo AR inæqualiter deductis & simul dimissis, accelerationes eorum semper erunt ut arcus describendi TR, tR. Sunt autem partes sub initio descriptæ ut accelerationes, hoc est ut totæ sub initio describendæ, & propterea partes quæ manent describendæ & accelerationes subsequentes his partibus proportionales sunt etiam ut totæ; & sic deinceps. Sunt igitur accelerationes atq; adeo velocitates genitæ & partes his velocitatibus descriptæ partesq; describendæ, semper ut totæ; & propterea partes describendæ datam servantes rationem ad invicem simul evanescent, id est corpora duo oscillantia simul pervenient ad perpendiculum AR. Cumq; vicissim ascensus perpendiculorum de loco infimo R, per