Jump to content

Pagina:Werkecarlf03gausrich.djvu/196

E Wikisource
Haec pagina emendata est

si generaliter per exprimimus correctionem valoris approximati integralis Hae correctiones cum correctionibus nexae erunt per aequationem

Quo vero illas independenter eruere possimus, perpendamus, functionem per substitutionem transire in

sive in

sive in

sive denique, quum a priori sciamus, etc. usque ad sponte evanescere, in

At quare quum per substitutionem transeant in (art. 9), functio per eandem substitutionem transibit in Quodsi itaque seriem ex evolutione fractionis oriundam per designamus, erit

quo pacto coëfficientes etc. quousque lubet erui poterunt.

Ita in exemplo art. 10 invenimus