Dem. Statuendo φ ( u , x ) = ( α + β u + γ x ) Q = ( α ′ + β ′ u + γ ′ x ) Q ′ = ( α ″ + β ″ u + γ ″ x ) Q ″ etc. {\displaystyle {\begin{array}{rl}\varphi (u,x)&=(\alpha +\beta u+\gamma x)Q\\&=(\alpha '+\beta 'u+\gamma 'x)Q'\\&=(\alpha ''+\beta ''u+\gamma ''x)Q''\\&{\text{etc.}}\end{array}}} erunt Q , {\displaystyle Q,} Q ′ , {\displaystyle Q',} Q ″ {\displaystyle Q''} etc. functiones integrae indeterminatarum u , {\displaystyle u,} x , {\displaystyle x,} α , {\displaystyle \alpha ,} β , {\displaystyle \beta ,} γ , {\displaystyle \gamma ,} α ′ , {\displaystyle \alpha ',} β ′ , {\displaystyle \beta ',} γ ′ , {\displaystyle \gamma ',} α ″ , {\displaystyle \alpha '',} β ″ , {\displaystyle \beta '',} γ ″ , {\displaystyle \gamma '',} etc. atque d φ ( u , x ) d x = γ Q + ( α + β u + γ x ) . d Q d x = γ ′ Q ′ + ( α ′ + β ′ u + γ ′ x ) . d Q ′ d x = γ ″ Q ″ + ( α ″ + β ″ u + γ ″ x ) . d Q ″ d x etc. d φ ( u , x ) d u = β Q + ( α + β u + γ x ) . d Q d u = β ′ Q ′ + ( α ′ + β ′ u + γ ′ x ) . d Q ′ d u = β ″ Q ″ + ( α ″ + β ″ u + γ ″ x ) . d Q ″ d u etc. {\displaystyle {\begin{array}{rl}{\frac {d\varphi (u,x)}{dx}}&=\gamma Q+(\alpha +\beta u+\gamma x).{\frac {dQ}{dx}}\\&=\gamma 'Q'+(\alpha '+\beta 'u+\gamma 'x).{\frac {dQ'}{dx}}\\&=\gamma ''Q''+(\alpha ''+\beta ''u+\gamma ''x).{\frac {dQ''}{dx}}\\&{\text{etc.}}\\{\frac {d\varphi (u,x)}{du}}&=\beta Q+(\alpha +\beta u+\gamma x).{\frac {dQ}{du}}\\&=\beta 'Q'+(\alpha '+\beta 'u+\gamma 'x).{\frac {dQ'}{du}}\\&=\beta ''Q''+(\alpha ''+\beta ''u+\gamma ''x).{\frac {dQ''}{du}}\\&{\text{etc.}}\end{array}}} Substitutis hisce valoribus in factoribus, e quibus conflatur productum Ω , {\displaystyle \Omega ,} puta in α + β u + γ x + β w . d φ ( u , x ) d x − γ w . d φ ( u , x ) d u α ′ + β ′ u + γ ′ x + β w . d φ ( u , x ) d x − γ ′ w . d φ ( u , x ) d u α ″ + β ″ u + γ ″ x + β ″ w . d φ ( u , x ) d x − γ ″ w . d φ ( u , x ) d u etc. resp. {\displaystyle {\begin{array}{c}\alpha +\beta u+\gamma x+\beta w.{\frac {d\varphi (u,x)}{dx}}-\gamma w.{\frac {d\varphi (u,x)}{du}}\\\alpha '+\beta 'u+\gamma 'x+\beta w.{\frac {d\varphi (u,x)}{dx}}-\gamma 'w.{\frac {d\varphi (u,x)}{du}}\\\alpha ''+\beta ''u+\gamma ''x+\beta ''w.{\frac {d\varphi (u,x)}{dx}}-\gamma ''w.{\frac {d\varphi (u,x)}{du}}\\{\text{etc. resp.}}\end{array}}} hi obtinent valores sequentes ( α + β u + γ x ) ( 1 + β w . d Q d x − γ w . d Q d u ) ( α ′ + β ′ u + γ ′ x ) ( 1 + β ′ w . d Q ′ d x − γ ′ w . d Q d u ) ( α ″ + β ″ u + γ ″ x ) ( 1 + β ″ w . d Q ″ d x − γ ″ w . d Q ″ d u ) etc. {\displaystyle {\begin{array}{c}(\alpha +\beta u+\gamma x)\left(1+\beta w.{\frac {dQ}{dx}}-\gamma w.{\frac {dQ}{du}}\right)\\(\alpha '+\beta 'u+\gamma 'x)\left(1+\beta 'w.{\frac {dQ'}{dx}}-\gamma 'w.{\frac {dQ}{du}}\right)\\(\alpha ''+\beta ''u+\gamma ''x)\left(1+\beta ''w.{\frac {dQ''}{dx}}-\gamma ''w.{\frac {dQ''}{du}}\right)\\{\text{etc.}}\end{array}}}