Jump to content

Philosophiae Naturalis Principia Mathematica/Liber I/Sect. XIV. De Motu corporum Minimorum, quæ Veribus cen tripetis ad singulas Magni alicujus corporis partes ten dentibus agitantur.

Checked
E Wikisource
DE MOTU CORPORUM LIBER PRIMUS.
SECT. XIV. De Motu corporum Minimorum, quæ Veribus cen tripetis ad singulas Magni alicujus corporis partes ten dentibus agitantur.
1687

 SECT. XIII. De corporum non Sphærieorum Viribus attracti vis. DE MOTU CORPORUM LIBER SECUNDUS.
SECT. I. De Motu corporum quibus resistitur in ratione velocitatis.
 

SECT. XIV.

De motu corporum minimorum, quæ viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur.

Prop. XCIV. Theor. XLVIII.

Si media duo similaria, spatio planis parallelis utrinq; terminato, distinguantur ab invicem, & corpus in transitu per hoc spatium attrahatur vel impellatur perpendiculariter versus medium alterutrum, neq; ulla alia vi agitetur vel impediatur; Sit autem attractio, in æqualibus ab utroq; plano distantiis ad eandem ipsius partem captis, ubiq; eadem: dico quod sinus incidentiæ in planum alterutrum erit ad sinum emergentiæ ex plano altero in ratione data.

Cas. 1. Sunto Aa, Bb plana duo parallela. Incidat corpus in planum prius Aa secundam lineam GH, ac toto suo per spatium intermedium transitu attrahatur vel impellatur versus medium incidentiæ, eaq; actione describat lineam curvam HI, & emergat secundum lineam IK. Ad planum emergentiæ Bb erigatur perpendiculum IM, occurrens tum lineæ inciden tiæ GH productæ in M, tum plano incidentiæ Aa in R; & linea emergentiæ KI producta occurrat HM in L. Centro L intervallo LI describatur circulus, secans tam HM in P & Q, quam MI productam in N; & primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilæi) curva HI Parabola, cujus hæc est proprietas, ut rectangulum sub dato latere recto & linea IM æquale sit HM quadrato; sed & linea HM bisecabitur in L. Unde si ad MI demittatur perpendiculum LO, æquales erunt MO, OR; & additis æqualibus IO, ON, fient totæ æquales MN, IR. Proinde cum IR detur, datur etiam MN, estq; rectangulum NMI ad rectangulum sub latere recto & IM, hoc est, ad HMq., in data ratione. Sed rectangulum NMI æquale est rectangulo PMQ, id est, differentiæ quadratorum MLq. & PLq. seu LIq.; & HMq. datam rationem habet ad sui ipsius quartam partem LMq.: ergo datur ratio MLq.−LIq. ad MLq., & divisim, ratio LIq. ad MLq., & ratio dimidiata LI ad ML. Sed in omni triangulo LMI, sinus angulorum sunt proportionales lateribus oppositis. Ergo datur ratio sinus anguli incidentiæ LMR ad sinum anguli emergentiæ LIR. Q. E. D.

Cas. 2. Transeat jam corpus successive per spatia plura parallelis planis terminata, AabB, BbcC & c. & agitetur vi quæ sit in singulis separatim uniformis, at in diversis diversa; & per jam demonstrata, sinus incidentiæ in planum primum Aa erit ad sinum emergentiæ ex plano secundo Bb, in data ratione; & hic

sinus, qui est sinus incidentiæ in planum secundum Bb, erit ad sinum emergentiæ

ex plano tertio Cc, in data ratione; & hic sinus ad sinum emergentiæ ex plano quarto Dd, in data ratione; & sic in infinitum: & ex æquo sinus incidentiæ in planum primum ad sinum emergentiæ ex plano ultimo in data ratione. Minuatur jam planorum intervalla & augeatur numerus in infinitum, eo ut attractionis vel impulsus actio secundum legem quamcunq; assignatam continua reddatur; & ratio sinus incidentiæ in planum primum ad sinum emergentiæ ex plano ultimo, semper data existens, etiamnum dabitur. Q. E. D.

Prop. XCV. Theor. XLIX.

Iisdem positis; dico quod velocitas corporis ante incidentiam est ad ejus velocitatem post emergentiam, ut sinus emergentiæ ad sinum incidentiæ.

Capiantur AH, Id æquales, & erigantur perpendicula AG, dK occurrentia lineis incidentiæ & emergentiæ GH, IK, in G & K. In GH capiatur TH æqualis IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2. distinguatur motus corporis in duos, unum planis Aa, Bb, Cc & c. perpendicularem, alterum iisdem parallelum. Vis attractionis vel impulsus agendo secundum lineas perpendiculares nil mutat motum secundum parallelas, & propterea corpus hoc motu conficiet æqualibus temporibus æqualia illa secundum parallelas intervalla, quæ sunt inter lineam AG & punctum H, interq; punctum I & lineam dK; hoc est, æqualibus temporibus describet lineas GH, IK. Proinde velocitas ante incidentiam est ad velocitatem post emergentiam, ut GH ad IK vel TH, id est, ut AH vel Id ad vH, hoc est (respectu radii TH vel IK) ut sinus emergentiæ ad sinum incidentiæ. Q. E. D.

Prop. XCVI. Theor. L.

Iisdem positis & quod motus ante incidentiam velocior sit quam postea: dico quod corpus, inclinando lineam incidentiæ, reflectetur tandem, & angulus reflexionis fiet æqualis angulo incidentiæ.

Nam concipe corpus inter plana parallela Aa, Bb, Cc & c. describere arcus Parabolicos, ut supra; sintq; arcus illi HP, PQ, QR, & c. Et sit ea lineæ incidentiæ GH obliquitas ad planum primum Aa, ut sinus incidentiæ sit ad radium circuli, cujus est sinus, in ea ratione quam habet idem sinus incidentiæ ad sinum emergentiæ ex plano Dd, in spatium DdeE: & ob sinum emergentiæ jam factum æqualem radio, angulus emergentiæ erit rectus, adeoq; linea emergentiæ coincidet cum plano Dd. Perveniat corpus ad hoc planum in puncto R; & quoniam linea emergentiæ coincidit cum eodem plano, perspicuum est quod corpus non potest ultra pergere versus planum Ee. Sed nec potest idem pergere in linea emergentiæ Rd, propterea quod perpetuo attrahitur vel impellitur versus medium incidentiæ. Revertetur itaq; inter plana Cc, Dd describendo arcum Parabolæ QRq, cujus vertex principalis (juxta demonstrata Galilæi) est in R; secabit planum Cc in eodem angulo in q, ac prius in Q; dein pergendo in arcubus parabolicis qp, ph & c. arcubus prioribus QP, PH similibus & æqualibus, secabit reliqua plana in iisdem angulis in p, h & c. ac prius in P, H & c. emergetq; tandem eadem obliquitate in h, qua incidit in H. Concipe jam planorum Aa, Bb, Cc, Dd, Ee intervalla in infinitum minui & numerum augeri, eo ut actio attractionis vel impulsus secundum legem quamcunq; assignatam continua reddatur; & angulus emergentiæ semper angulo incidentiæ æqualis existens, eidem etiamnum manebit æqualis. Q. E. D.

Scholium.

Harum attractionum haud multum dissimiles sunt Lucis reflexiones & refractiones, factæ secundum datam Secantium rationem, ut invenit Snellius, & per consequens secundum datam Sinuum rationem, ut exposuit Cartesius. Namq; Lucem successive propagari & spatio quasi decem minutorum primorum a Sole ad Terram venire, jam constat per Phænomena Satellitum Jovis, Observationibus diversorum Astronomorum confirmata. Radii autem in aere existentes (uti dudum Grimaldus, luce per foramen in tenebrosum cubiculum admissa, invenit, & ipse quoq; expertus sum) in transitu suo prope corporum vel opacorum vel perspicuorum angulos (quales sunt nummorum ex auro, argento & ære cusorum termini rectanguli circulares, & cultrorum, lapidum aut fractorum vitrorum acies) incurvantur circum corpora, quasi attrac ti in eadem; & ex his radiis, qui in transitu illo propius accedunt ad corpora incurvantur magis, quasi magis attracti, ut ipse etiam diligenter observavi. In figura designat s aciem cultri vel cunei cujusvis AsB; & gowog, fnvnf, emtme, dlsld sunt radii, arcubus owo, nvn, mtm, lsl versus cultrum incurvati; idq; magis vel minus pro distantia eorum a cultro. Cum autem talis incurvatio radiorum fiat in aere extra cultrum, debebunt etiam radii, qui incidunt in cultrum, prius incurvari in aere quam cultrum attingunt. Et par est ratio incidentium in vitrum. Fit igitur refractio, non in puncto incidentiæ, sed paulatim per continuam incurvationem radiorum, factam partim in aere antequam attingunt vitrum, partim (ni fallor) in vitro, postquam illud ingressi sunt: uti in radiis ckzkc, biyib, ahxha incidentibus ad r, q, p, & inter k & z, i & y, h & x incurvatis, delineatum est. Igitur ob analogiam quæ est inter propagationem radiorum lucis & progressum corporum, visum est Propositiones sequentes in usus opticos subjungere; interea de natura radiorum (utrum sint corpora necne) nihil omnino disputans, sed trajectorias corporum trajectoriis radiorum persimiles

solummodo determinans.

Prop. XCVII. Prob. XLVII.

Posito quod sinus incidentiæ in superficiem aliquam sit ad sinum emergentiæ in data ratione, quodq; incurvatio viæ corporum juxta superficiem illam fiat in spatio brevissimo, quod ut punctum considerari possit; determinare superficiem quæ corpuscula omnia de loco dato successive manantia convergere faciat ad alium locum datum.

Sit A locus a quo corpuscula divergunt; B locus in quem convergere debent; CDE curva linea quæ circa axem AB revoluta describat superficiem quæsitam; D, E curvæ illius puncta duo quævis; & EF, EG perpendicula in corporis vias AD, DB demissa. Accedat punctum D ad punctum E; & lineæ DF qua AD augetur, ad lineam DG qua DB diminuitur, ratio ultima erit eadem quæ sinus incidentiæ ad sinum emergentiæ. Datur ergo ratio incrementi lineæ AD ad decrementum lineæ DB; & propterea si in axe AB sumatur ubivis punctum C, per quod curva CDE transire debet, & capiatur ipsius AC incre mentum CM, ad ipsius BC decrementum CN in data ratione; centrisq; A, B, & intervallis AM, BN describantur circuli duo se mutuo secantes in D: punctum illud D tanget curvam quæsitam CDE, eandemq; ubivis tangendo determinabit. Q.E.I.

Corol. 1. Faciendo autem ut punctum A vel B nunc abeat in infinitum, nunc migret ad alteras partes puncti C, habebuntur figuræ illæ omnes quas Cartesius in Optica & Geometria ad refractiones exposuit. Quarum inventionem cum Cartesius maximi fecerit & studiose celaverit, visum fuit hic propositione exponere.

Corol. 2. Si corpus in superficiem quamvis CD, secundum lineam rectam AD lege quavis ductam incidens, emergat secundum aliam quamvis rectam DK, & a puncto C duci intelligantur lineæ curvæ CP, CQ ipsis AD, DK semper perpendiculares: erunt incrementa linearum PD, QD, atq; adeo lineæ ipsæ PD, QD, incrementis istis genitæ, ut sinus incidentiæ & emergentiæ ad invicem: & contra.

Prop. XCVIII. Prob. XLVIII.

Iisdem positis, & circa axem AB descripta superficie quacunq; attractiva CD, regulari vel irregulari, per quam corpora de loco dato A exeuntia transire debent: invenire superficiem secundam attractivam EF, quæ corpora illa ad locum datum B convergere faciat.

Juncta AB secet superficiem primam in C & secundam in E, puncto D utcunq; assumpto. Et posito sinu incidentiæ in superficiem primam ad sinum emergentiæ ex eadem, & sinu emergentiæ e superficie secunda ad sinum incidentiæ in eandem, ut quantitas aliqua data M ad aliam datam N; produc tum AB ad G ut sit BG ad CE ut M−N ad N, tum AD ad H ut sit AH æqualis AG,tum etiam DF ad K ut sit DK ad DH ut N ad M. Junge KB, & centro D intervallo DH describe circulum occurrentem KB productæ in L, ipsiq; DL parallelam age BF: & punctum F tanget lineam EF, quæ circa axem AB revoluta describet superficiem quæsitam. Q. E. F.

Nam concipe lineas CP, CQ ipsis AD, DF respective, & lineas ER, ES ipsis FB, FD ubiq; perpendiculares esse, adeoq; QS ipsi CE semper æqualem; & erit (per Corol. 2. Prop. XCVII.) PD ad QD ut M ad N, adeoq; ut DL ad DK vel FB ad FK; & divisim ut DL−FB seu PH−PD−FB ad FD seu FQ−QD; & composite ut HP−FB ad FQ, id est (ob æquales HP & CG, QS & CE) CE+BG−FR ad CE−FS. Verum (ob proportionales BG ad CE & M−N ad N) est etiam CE+BG ad CE ut M ad N: adeoq; divisim FR ad FS ut M ad N, & propterea per Corol. 2. Prop. XCVII. superficies EF cogit corpus in se secundum lineam DF incidens pergere in linea FR, ad locum B. Q.E.D.

Scholium.

Eadem methodo pergere liceret ad superficies tres vel plures. Ad usus autem Opticos maxime accommodatæ sunt figuræ Sphæricæ. Si Perspicillorum vitra Objectiva ex vitris duobus Sphærice figuratis & Aquam inter se claudentibus conflentur, fieri potest ut a refractionibus aquæ errores refractionum, quæ fiunt in vitrorum superficiebus extremis, satis accurate corrigantur. Talia autem vitra Objectiva vitris Ellipticis & Hyperbolicis præferenda sunt, non solum quod facilius & accuratius formari possint, sed etiam quod penicillos radiorum extra axem vitri sitos accuratius refringant. Verum tamen diversa diversorum radiorum refrangibilitas impedimento est, quo minus Optica per figuras vel Sphæricas vel alias quascunq; perfici possit. Nisi corrigi possint errores illinc oriundi, labor omnis in cæteris corrigendis imperite collocabitur.