particula factum per lineolam KL, & contemporaneum velocitatis incrementum per lineolam PQ; & centro C Asymptotis rectangulis CA, CH describatur Hyperbola quævis BNS, erectis perpendiculis AB, KN, LO, PR, QS occurrens in B, N, O, R, S. Quoniam AK est ut APq., erit hujus momentum KL ut illius momentum 2APQ, id est ut AP in KC. Nam velocitatis incrementum PQ, per motus Leg. 2. proportionale est vi generanti KC. Componatur ratio ipsius KL cum ratione ipsius KN, & fiet rectangulum KL×KN ut AP×KC×KN; hoc est, ob datum rectangulum KC×KN, ut AP. Atqui areæ Hyperbolicæ KNOL ad rectangulum KL×KN ratio ultima, ubi coeunt puncta K & L, est æqualitatis. Ergo area illa Hyperbolica evanescens est ut AP. Componitur igitur area tota Hyperbolica ABOL ex particulis KNOL velocitati AP semper proportionalibus, & propterea spatio velocitate ista descripto proportionalis est. Dividatur jam area illa in partes æquales ABMI, IMNK, KNOL, &c. & vires absolutæ AC, IC, KC, LC, &c. erunt in progressione Geometrica. Q. E. D.
Et simili argumento, in ascensu corporis, sumendo, ad contrariam partem puncti A, æquales areas ABmi, imnk, knol, &c. constabit quod vires absolutæ AC, iC, kC, lC, &c. sunt continue proportionales. Ideoq; si spatia omnia in ascensu & descensu capiantur æqualia; omnes vires absolutæ lC, kC, iC, AC, IC, KC, LC, &c. erunt continue proportionales. Q. E. D.
Corol. 1. Hinc si spatium descriptum exponatur per aream Hyperbolicam ABNK; exponi possunt vis gravitatis, velocitas corporis & resistentia Medii per lineas AC, AP & AK respective; & vice versa.
Corol. 2. Et velocitatis maximæ, quam corpus in infinitum descendendo potest unquam acquirere, exponens est linea AC.
Corol. 3. Igitur si in data aliqua velocitate cognoscatur resistentia Medii, invenietur velocitas maxima, sumendo ipsam ad velocitatem illam datam in