dimidiata ratione, quam habet vis Gravitatis ad Medii resistentiam illam cognitam.
Corol. 4. Sed & particula temporis, quo spatii particula quam minima NKLO in descensu describitur, est ut rectangulum KN×PQ. Nam quoniam spatium NKLO est ut velocitas ducta in particulam temporis; erit particula temporis ut spatium illud applicatum ad velocitatem, id est ut rectangulum quam minimum KN×KL applicatum ad AP. Erat supra KL ut AP×PQ. Ergo particula temporis est ut KN×PQ, vel quod perinde est, ut . Q.E.D.
Corol. 5. Eodem argumento particula temporis, quo spatii particula nklo in ascensu describitur, est ut .
Prop. IX. Theor. VII.
Positis jam demonstratis, dico quod si Tangentes angulorum sectoris Circularis & sectoris Hyperbolici sumantur velocitatibus proportionales, existente radio justæ magnitudinis: erit tempus omne ascensus futuri ut sector Circuli, & tempus omne descensus præteriti ut sector Hyperbolæ.
Rectæ AC, qua vis gravitatis exponitur, perpendicularis & æqualis ducatur AD. Centro D semidiametro AD describatur tum circuli Quadrans AtE, tum Hyperbola rectangula AVZ axem habens AX, verticem principalem A & Asymptoton DC. Jungantur Dp, DP, & erit sector circularis AtD ut tempus ascensus omnis futuri; & Sector Hyperbolicus ATD ut tempus descensus omnis præteriti, si modo Sectorem tangentes Ap & AP sint velocitates.
Cas. 1. Agatur enim Dvq abscindens Sectoris ADt & trianguli ADp momenta, seu particulas quam minimas simul descriptas tDv & pDq. Cum particulæ