Jump to content

Pagina:Principia newton la.djvu/179

E Wikisource
Haec pagina emendata est

revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo motus corporum in hujusmodi Spiralibus peragantur.

Prop. XVI. Theor. XII.

Si Medii densitas in locis singulis sit reciproce ut dignitas aliqua distantiæ locorum a centro, sitque vis centripeta reciproce ut distantia in dignitatem illam ducta: dico quod corpus gyrari potest in Spirali, quæ radios omnes a centro illo ductos intersecat in angulo dato.

Demonstratur eadem methodo cum Propositione superiore. Nam si vis centripeta in P sit reciproce ut distantiæ SP dignitas quælibet cujus index est n+1; colligetur ut supra, quod tempus quo corpus describit arcum quemvis PQ erit ut PQ× & resistentia in P ut sive ut , adeoque ut . Et propterea densitas in P est reciproce ut .

Scholium.

Cæterum hæc Propositio & superiores, quæ ad Media inæqualiter densa spectant, intelligendæ sunt de motu corporum adeo parvorum, ut Medii ex uno corporis latere major densitas quam ex altero non consideranda veniat. Resistentiam quoque cæteris paribus densitati proportionalem esse suppono. Unde in Mediis quorum vis resistendi non est ut densitas, debet densitas eo usque augeri vel diminui, ut resistentiæ vel tollatur excessus vel defectus suppleatur.

Prop. XVII. Prob. V.

Invenire & vim centripetam & Medii resistentiam qua corpus in data Spirali data lege revolvi potest. Vide Fig. Prop. XV.

Sit spiralis illa PQR. Ex velocitate qua corpus percurrit arcum quam minimum PQ dabitur tempus, & ex altitudine TQ, quæ est ut vis centripeta & quadratum temporis dabitur vis. Deinde ex arearum, æqualibus temporum particulis confectarum PSQ & QSR, differentia RSr, dabitur corporis retardatio, & ex retardatione invenietur resistentia ac densitas Medii.

Prop. XVIII. Prob. VI.

Data lege vis centripetæ, invenire Medii densitatem in locis singulis, qua corpus datam Spiralem describet.

Ex vi centripeta invenienda est velocitas in locis singulis, deinde ex velocitatis retardatione quærenda Medii densitas: ut in Propositione superiore.

Methodum vero tractandi hæc Problemata aperui in hujus Propositione decima, & Lemmate secundo; & Lectorem in hujusmodi perplexis disquisitionibus