est in data ratione, nempe in ratione OP ad OS; tempus descensus in Spirali erit ad tempus descensus in recta SP in eadem illa data ratione, proindeque datur.
Corol. 6. Si centro S intervallis duobus describantur duo circuli; numerus revolutionum quas corpus intra circulorum circumferentias complere potest, est ut , sive ut Tangens anguli quem Spiralis continet cum radio PS; tempus vero revolutionum earundem ut , id est reciproce ut Medii densitas.
Corol. 7. Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quæ fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:) corpus illud perget innumeras consimiles revolutiones BFC, CGD, &c. facere, & intersectionibus distinguet Radium AS in partes AS, BS, CS, DS &c. continue proportionales. Revolutionum vero tempora erunt ut Perimetri orbitarum AEB, BFC, CGD &c. directe, & velocitates in principiis A, B, C, inverse; id est ut , , . Atq; tempus totum, quo corpus perveniet ad centrum, erit ad tempus revolutionis primæ, ut summa omnium continue proportionalium , , pergentium in infinitum, ad terminum primum ; id est ut terminus ille primus AS 1 2 ad differentiam duorum primorum -, & quam proxime ut AS ad AB. Unde tempus illud totum expedite invenitur.
Corol. 8. Ex his etiam præterpropter colligere licet motus corporum in Mediis, quorum densitas aut uniformis est, aut aliam quamcunque legem assignatam observat. Centro S intervallis continue proportionalibus SA, SB, SC &c. describe circulos quotcunque, & statue numerum revolutionum inter perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem mediocrem inter eosdem quam proxime; Sed & in eadem quoq; ratione esse Tangentem anguli quo Spiralis præfinita, in Medio de quo egimus, secat radium AS, ad tangentem anguli quo Spiralis nova secat radium eundem in Medio proposito: Atq; etiam ut sunt eorundem angulorum secantes ita esse tempora revolutionum omnium inter circulos eosdem duos quam proxime. Si hæc fiant passim inter circulos binos, continuabitur motus per circulos omnes. Atque hoc pacto haud difficulter imaginari possimus quibus modis ac temporibus corpora in Medio quocunque regulari gyrari debebunt.
Corol. 9. Et quamvis motus excentrici in Spiralibus ad formam Ovalium accedentibus peragantur; tamen concipiendo Spiralium illarum singulas