Jump to content

Pagina:Principia newton la.djvu/26

E Wikisource
Haec pagina emendata est

Lemma III.

Eædem rationes ultimæ sunt etiam æqualitatis, ubi parallelogrammorum latitudines AB, BC, CD, &c. sunt inæquales, & omnes minuuntur in infinitum.

Sit enim AF æqualis latitudini maximæ & compleatur parallelogrammum FAaf. Hoc erit majus quam differentia figuræ inscriptæ & figuræ circumscripta, at latitudine sua AF in infinitum diminuta, minus fiet quam datum quodvis rectangulum.

Corol. 1. Hinc summa ultima parallelogrammorum evanescentium coincidit omni ex parte cum figura curvilinea.

Corol. 2. Et multo magis figura rectilinea, quæ chordis evanescentium arcuum ab, bc, cd, &c. comprehenditur, coincidit ultimo cum figura curvilinea.

Corol. 3. Ut & figura rectilinea quæ tangentibus eorundem arcuum circumscribitur.

Corol. 4. Et propterea hæ figuræ ultimæ (quoad perimetros acE,) non sunt rectilineæ, sed rectilinearum limites curvilinei.

Lemma IV.

Si in duabus figuris AacE, PprT, inscribantur (ut supra) duæ parallelogrammorum series, sitq; idem amborum numerus, & ubi latitudines in infinitum diminuitur, rationes ultimæ parallelogrammorum in una figura ad parallelogramma in altera, singulorum ad singula, sint eædem; dico quod figuræ duæ AacE, PprT, sunt ad invicem in eadem illa ratione.

Etenim ut sunt parallelogramma singula ad singula, ita (componendo) fit summa omnium ad summam omnium, & ita figura ad figuram; existente nimirum figura priore (per Lemma III.) ad summam priorem, & posteriore figura ad summam posteriorem in ratione æqualitatis.

Corol. Hinc si duæ cujuscunq; generis quantitates in eundem partium numerum utcunq; dividantur, & partes illæ, ubi numerus earum augetur & magnitudo diminuitur in infinitum, datam obtineant rationem ad invicem, prima ad primam, secunda ad secundam cæteræq; suo ordine ad cæteras; erunt tota ad invicem in eadem illa data ratione. Nam si in Lemmatis hujus figuris sumantur parallelogramma inter se ut partes, summæ partium semper erunt ut summæ parallelogrammorum; atq; adeo, ubi partium & parallelogrammorum numerus augetur & magnitudo diminuitur in infinitum, in ultima ratione parallelogrammi ad parallelogrammum, id est (per hypothesin) in ultima ratione partis ad partem.