posse per planum aequidistans horizonti, quam per planum supra horizontem inclinatum. Sit itaque planum horizonti aequidistans secundum lineam ab, cui ad rectos angulos sit bc; et mobile sit sphaera e; sit autem quaecunque vis f: dico, sphaeram e, nullam extrinsecam et accidentalem resistentiam habentem, posse per planum ab moveri a minori vi quam sit vis f. Sit vis n, quae potest sursum trahere pondus e; et sicut vis n ad vim f ita sit ad linea ad lineam db. Ex his, itaque, quae supra demonstrata sunt, poterit sphaera e sursum trahi per planum ad a vi f: ergo per planum ab a minori vi, quam sit f, movebitur sphaera e. Quod fuit demonstrandum.[1]
Hic autem non me praeterit, posse aliquem obiicere, me ad has demonstrationes tanquam verum id supponere quod falsum est: nempe, suspensa pondera ex lance, cum lance angulos rectos continere; cum tamen pondera ad centrum tendentia concurrerent. His responderem, me sub suprahumani Archimedis (quem nunquam absque admiratione nomino) abs memet protegere. Ipse enim hoc idem in sua Parabolae quadratura supposuit; et hoc, fortasse, ut eo longius alios se excedere ostenderet, quo etiam ex falsis vera haurire posset: nec tamen dubitandum est, ipsum concludere falsum, cum conclusionem eandem prius geometrica abs demonstratione probasset. Quare, aut dicendum est, suspensa pondera vere cum lance rectos continere angulos, aut nihil referre si rectos contineant, sed tantum sufficere ut aequales sint; quod forte probabilius erit: nisi velimus dicere, hanc potius esse geometricam licentiam; sicut dum idem Archimedes supponit, superficies habere gravitatem, et alteram altera graviorem esse, cum tamen revera omni sint expertes gravitate. Et haec quae demonstravimus, ut etiam supra diximus, intelligenda sunt de mobilibus ab omni
1. equidistante – 1-2. horizonte – 2. itaquae – equidistans – 7. vis f. Fiat n. Sit – 12. trai – 20. hoc quidem fortasse – 21. aurire – 25. referri –
- ↑ Aggiunta marginale: «Ex hoc constare potest, non esse motuni mixtum». [A «mixtum» l'Autore aveva soggiunto «nisi circularem»; e poi cancellò.] «Cum enim violentus gravium sit a centro, naturalis vero ad centrum, non potest ex his componi motus, qui [il ms.: quod] partim ascendat, partim vero descendat: nisi forte dicamus, talem motum mixtum esse qui circa mundi centrum super circuli circumferentia fit. Sed iste melius dicetur neuter quam mixtus: mixtus enim de utroque participat, neuter vero de nullo».